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ABSTRACT
The success ofmachine learning has brought great research progress
for multimedia retrieval. Due to the widely explored adversarial
attacks on DNNs, image retrieval system based on deep learning
is also susceptible to such vulnerability. Nevertheless, the general-
ization ability of adversarial noise in the targeted attacks against
image retrieval is yet to be explored.

In this paper, we propose AdvHash, the first targeted mismatch
attack on deep hashing through adversarial patch. After superim-
posed with the same adversarial patch, any query image with a
chosen label will retrieve a set of irrelevant images with the target
label. Concretely, we first formulate a set-to-set problem, where
a set of samples are pushed into a predefined clustered area in
the Hamming space. Then we obtain a target anchor hash code
and transform the attack to a set-to-point optimization. In order to
generate a stable class-wise adversarial patch more efficiently, we
propose a product-based weighted gradient aggregation strategy to
dynamically adjust the gradient direction of the patch by exploiting
the Hamming distances between training samples and the target
anchor hash code and assigning different weights to discrimina-
tively aggregate gradients. Extensive experiments on benchmark
datasets verify that AdvHash is highly effective at attacking two
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1 INTRODUCTION
With the explosive growth of data in cyberspace, multimedia re-
trieval has become a crucial research topic, and the study of efficient
search stands as an ongoing interest. Benefit from the powerful
feature representation ability of deep neural networks (DNNs), deep
learning-based methods have become state-of-the-art solutions for
multimedia retrieval. Existing image retrieval approaches are di-
vided into two major categories, namely deep feature-based [1, 32,
38] and deep hashing-based [5, 6, 8, 17, 25, 34, 44]. The former
one straightly aggregates deep features extracted from pre-trained
or fine-tuned DNN models as and then measures their similarity
by computing Euclidean distance or cosine similarity, while deep
hashing is designed to improve the search efficiency by converting
the original high-dimension feature space into a compact binary
Hamming space and measure the similarity by Hamming distance.

Recent studies [4, 14, 36] revealed that DNNs are vulnerable
to adversarial examples, which will be misclassified to any other
label (non-targeted attack) or a specific label (targeted attack) at
the inference stage. Both targeted and non-targeted attacks are
realized by crafting perturbations or patches. Perturbations are
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invisible to human beings, but usually need to modify the entire
image and are thus easy to be mitigated through simple image
transformations like feature squeezing [41]. In contrast, patches are
conspicuous, but only cover a small area and thus are more feasible
for real-world scenarios. Naturally, deep learning-based multimedia
retrieval systems inherit this vulnerability and are susceptible to
adversarial attacks as well. In order to investigate the robustness
of deep learning-based image retrieval systems, many prior works
mainly focus on attacking deep feature-based retrieval systems [7,
21, 27, 37, 45, 46], and aim to construct adversarial perturbations
or patches accordingly.

As another side of the coin, some researchers recently turned to
attacking deep hashing-based image retrieval systems and proposed
different methods [2, 39, 40, 43]. However, all these approaches are
designed to construct adversarial perturbations, while the patch-
based attack is yet to be explored for the study of robustness w.r.t
the deep hashing-based image retrieval systems. On the another
hand, these previous attacks against deep hashing are constrained
to the image-specific scenario (i.e., each adversarial noise is effective
for a single query exclusively), failing to explore the generaliza-
tion ability of adversarial noise. Furthermore, we argue that it is
non-trivial to improve the generalization ability when the targeted
attack is made as one of the design goals. Note that it is rather
easy to make a single query shift away from the original place
in the embedding space (feature space or Hamming space), yet to
make all queries into a predefined area with only a single noise
is far more challenging. To the best of our knowledge, we are the
first to explore the generalization ability of adversarial noise in the
targeted attack scenario towards retrieval system.

In this work, we propose AdvHash, the first class-wise targeted
attack against deep hashing, where one single patch with strong
generalization ability can be effectively applied to a set of image
samples with a chosen label to cause the mismatch of retrieval
system. Different from the adversarial attacks on image classifi-
cation, AdvHash not only expects the retrieval system to make a
wrong top-1 prediction, but also seeks to corrupt the entire list
of retrieved results. Moreover, the attack in AdvHash is targeted,
i.e., AdvHash wishes the retrieved results to be a set of objects
that all belong to a specific class. For this goal, we first formulate
this as a set-to-set problem. Observing that most state-of-the-art
deep hashing systems are highly clustered, AdvHash aims to find a
target anchor code to represent the target cluster in the Hamming
space. Then the set-to-set problem is transformed into a set-to-point
optimization, which is easier to be solved. In addition, through ex-
tensive experiments, we find that training adversarial examples
for targeted attacks on deep hashing share the same convergence
variance. We thus propose the product-based weighted gradient
aggregation strategy to generate a stable adversarial patch with
strong generalization ability in a more efficient way. The gradients
will be dynamically weighted in each iteration according to the
associated inner products, and the patch will be recurrently updated
based on the historical information.

In summary, this work makes the following contributions:
• WeproposeAdvHash, the first targeted attack on deep hashing-
based image retrieval systems through adversarial patch,
where one single adversarial patch can be applicable to a set
of images with the chosen label.

• We proposed product-based weighted gradients aggregation
as well as recurrent patch update strategies to improve the
effectiveness and efficiency of AdvHash.

• Our extensive experiments on benchmark datasets ImageNet
and NUS-WIDE verify that AdvHash is highly effective at
attacking state-of-the-art deep hashing schemes HashNet
and CSQ.

2 RELATEDWORK
2.1 Adversarial Attacks on Image Classification
Perturbation-based Attack. Adversarial examples were first in-
troduced in [36] to cause the misprediction of DNN classifiers.
Some follow-up works [14, 19] were made to accelerate the gen-
eration process. The adversarial perturbations generated by these
methods, however, are image-specific and did not generalize to var-
ious samples. Later, the study of universal adversarial perturbations
(UAPs) [24, 28–30] emerges, where an image-agnostic adversarial
perturbation can be applied to a bunch of images. Although UAPs
were studied in non-targeted scenario originally, afterwards tar-
geted UAPs were proposed in [15, 31] to misclassify all the input
samples to a predefined target class. As a following work, the double
targeted universal adversarial perturbation (DT-UAP) is proposed
that can not only arbitrarily choose the class of the source side (i.e.,
input samples) but also the target side (i.e., output labels) [3].
Patch-basedAttack.Unlike the perturbation-basedmethod, which
needs to precisely control over each pixel of the entire image, adver-
sarial patches [4] are visible but confined to a small area of the image.
LaVAN [18] was proposed to make the adversarial patch localized
at a certain area without covering any of the main object(s) in the
image. Perceptual-Sensitive GAN (PS-GAN) [22] conducts attacks by
using generative adversarial networks (GANs) to generate patches.
Similar to UAP that aims at improving the generalization ability,
Liu et al. [23] proposed a universal adversarial patch against the
classification model. However, it still confines to the non-targeted
scenario. For targeted attack, the authors in [3] conducted experi-
mental attempts to explore the possibility of extending DT-UAP to
the patch-based case.

2.2 Adversarial Attacks on Image Retrieval
Image retrieval is a long-standing research topic in computer vision,
and it is observed that adversarial attack methods for classification
systems cannot be directly applied in image retrieval [21]. Recently,
some researchers have paid attention to exploring the vulnerabili-
ties of deep learning-based image retrieval systems.
Attacks on Deep Feature. Existing image retrieval systems can
be divided into deep feature-based and deep hashing-based meth-
ods. Adversarial attacks against deep feature-based image retrieval
have been investigated. Different approaches such as PIRE [27],
UAA-GAN [46], and AP-GAN [45] have been proposed to realize
non-targeted image-specific attack. For the purpose of improving
the generalization ability of adversarial noise, Li et al. [21] realize
the non-targeted UAP in retrieval task. Meanwhile, the first tar-
geted attack against image retrieval TMAA was proposed in [37].
However, TMAA still falls into the image-specific scenario. Most
recently, a query-efficient decision-based black-box attack against
image retrieval was proposed in [7].
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Table 1: A comprehensive comparison among existing attacks on deep learning-based image retrieval
Method Target model Attack type Generalization ability Targeted/Non-targeted

PIRE [27] Deep feature Perturbation Image-specific Non-targeted
UAA-GAN [46] Deep feature Perturbation Image-specific Non-targeted

DAIR [7] Deep feature Perturbation Image-specific Non-targeted
AP-GAN [45] Deep feature Patch Image-specific Non-targeted
TMAA [37] Deep feature Perturbation Image-specific Targeted
Li et al. [21] Deep feature Perturbation Image-agnostic Non-targeted
HAG [43] Deep hashing Perturbation Image-specific Non-targeted

CWDM [40] Deep hashing Perturbation Image-specific Non-targeted
DHTA [2] Deep hashing Perturbation Image-specific Targeted

Xiao et al. [39] Deep hashing Perturbation Image-specific Targeted
AdvHash Deep hashing Patch Class-wise Targeted

• Image-specific: the adversarial noise is effective to only one query sample.
• Image-agnostic: the adversarial noise is effective to all the images that belong to any class.
• Class-wise: the adversarial noise is effective to all the images that belong to a specific class.

Attacks on Deep Hashing. For the study of the vulnerability w.r.t.
deep hashing, [43] takes the first lead by maximizing the Hamming
distance between the perturbed image and the original one. Before
long, another non-targeted attack method CWDM was proposed
in [40], which seeks to push the perturbed sample into a sparse place
in Hamming space. As for targeted attacks, DHTA was proposed in
[2], aimed at retrieving images from the target class. Most recently,
another targeted attack was proposed in [39], aimed to increase the
transferability of adversarial examples. However, all these previous
works all falls into the image-specific scenario.

Our work aims to attack deep hashing, we are motivated to
conduct a targeted patch-based attack against deep hashing-based
image retrieval systems with strong generalization ability. The
setting of our work is close to DT-UAP while the task is entirely
different, as we manage to make the adversarial patch applicable
for all the image samples that belong to a same class (i.e., class-wise)
and make the patched images successfully retrieve images with a
same label in the top-K list (i.e., targeted). Table 1 summarizes the
existing adversarial attacks on deep learning-based image retrieval
systems and highlights the position of our proposed attack.

3 METHODOLOGY
3.1 Preliminaries
In this section, we briefly introduce the general process of deep
hashing based retrieval. Suppose 𝑿 = {(𝒙𝑖 ,𝒚𝑖 )}𝑁 indicates a sam-
ple set containing 𝑁 images labeled with 𝐿 classes, where 𝒙𝑖 indi-
cates a single image, and 𝒚𝑖 = [𝒚𝑖1, ...,𝒚𝑖𝐿] ∈ {0, 1}𝐿 is the corre-
sponding multi-label vector of 𝒙𝑖 . The 𝑙-th component of indica-
tor vector 𝒚𝑖𝑙 = 1 means that the image 𝒙𝑖 belongs to class 𝑙 . Let
𝑿𝑡 = {(𝒙𝑖 ,𝒚𝑖 ) ∈ 𝑿 |𝒚𝑖 = 𝒚𝑡 )} denote the subset of 𝑿 that consists
of images labeled with 𝒚𝑡 . Let 𝑿𝑠 = {(𝒙𝑞,𝒚𝑞) ∈ 𝑿 |𝒚𝑞 = 𝒚𝑠 )} be a
subset of 𝑿 that consists of 𝑄 (1 ≤ 𝑞 ≤ 𝑄) query images with the
same source label 𝒚𝑠 .
Deep Hashing Model. The 𝐾-bit hash code 𝒄 of an image 𝒙 is
obtained through a deep hashing model 𝐹 (·) as follows:

𝒄 = 𝐹 (𝒙) = sign (𝐻 (𝒙)) s. t. 𝒄 ∈ {1,−1}𝐾 (1)

where 𝐻 (·) consists of a feature extractor followed by a 𝐾-nodes
fully-connected layer, namely hash layer. 𝐾 is the hash bit length
that is equivalent to the length of the output of hash layer of 𝐻 (𝒙).

The feature extractor is usually a CNN model using backbone like
VGG or ResNet [44]. In particular, during the training process, the
sign(·) is usually approximated through a tanh(·), which is suitable
for optimization with back propagation and can squeeze continuous
feature values into the range (−1, +1) [6].
Similarity Measures. Given an image database {𝒙 𝑗 }𝐽𝑗=1 contain-

ing 𝐽 images and its corresponding hash codes {𝒄 𝑗 }𝐽𝑗=1, when
a query image 𝒙𝑞 is initiated, it is first fed into 𝐹 (·) to obtain
the hash code 𝒄 through Eq. (1). Then the Hamming distances
𝑫 = {𝑑H (𝒄, 𝒄 𝑗 )}𝐽𝑗=1 between the query 𝒙𝑞 and each sample of the
database will be used to measure their similarity, which is calculated
as 𝑑H (𝒄, 𝒄 𝑗 ) = (𝐾 − 𝒄 · 𝒄 𝑗 )/2.

It is clear that there is a linear relationship between the inner
product 𝒄 · 𝒄 𝑗 of two hash codes and their Hamming distance
𝑑H (𝒄, 𝒄 𝑗 ). Thus, the retrieval system returns a list of images in
a descending order of the inner products.

3.2 Formulating Set-to-set Targeted Attack
Problem Formulation. In general, given a certain source label
𝒚𝑠 and a targeted label 𝒚𝑡 , we want to generate a single localized
adversarial patch 𝛿 , which can be applicable to all the images 𝑿𝑠 =
{(𝒙𝑞,𝒚𝑠 )} labeled with 𝒚𝑠 . Specifically, after pasted with the patch
𝛿 , each adversarial query 𝒙 ′𝑞 from the set 𝑿 ′ = {(𝒙 ′𝑞,𝒚𝑠 )} will
retrieve a set of images labeled with 𝒚𝑡 . Each 𝒙 ′𝑞 is composed of
the original image 𝒙𝑞 ∈ 𝑿𝑠 , an additive patch 𝛿 and a binary mask
matrix𝑀 , denoted as:

𝒙 ′𝑞 = (1 −𝑀) ⊙ 𝒙𝑞 +𝑀 ⊙ 𝛿 (2)

where ⊙ represents element-wise multiplication. Note that M has
the same dimensionwith the input image 𝒙 andwe set its element to
1 where the adversarial patch is added and 0 otherwise. Intuitively,
in order to realize a label-wise targeted attack on deep hashing,
we need to minimize the distance between the hash codes of the
adversarial images 𝑿 ′and the sample set 𝑿𝑡 with the target label
𝒚𝑡 , i.e.,

min
𝛿
𝑑

(
𝐹

(
𝑿 ′) , 𝐹 (

𝑿𝑡
) )

(3)

where 𝐹 (𝑿 ′) =

{
𝐹 (𝒙 ′𝑞) | 𝒙 ′𝑞 ∈ 𝑿 ′

}
𝐹 (𝑿 (𝑡 ) ) =

{
𝐹 (𝒙) | 𝒙 ∈ 𝑿𝑡

}
,

and 𝑑 (·, ·) denotes the set-to-set distance metric.
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(a) HashNet (b) CSQ

Figure 1: Visualization of the hash layer outputs of two state-
of-the-art deep hashing models CSQ and HashNet, trained
on a dataset containing images of 10 classes from ImageNet.
Each color represents a class exclusively.

However, it is difficult to solve this optimization problem by sim-
ply minimizing each pairwise loss since the search space increases
quadratically. Therefore, we propose transforming the above set-
to-set problem to a set-to-point optimization, which is much easier
to solve.
Set-to-point Optimization. We first note that the input images
have a larger dimension than the mapped binary hash codes. Be-
sides, state-of-the-art deep hashing models are designed to mini-
mize the Hamming distances between samples that have the same
semantic labels and maximize the Hamming distances of those
that differ from each other [6, 10, 20, 42, 44, 47]. Therefore, the
deep hashing inevitably becomes a multivalued mapping [13] from
Hamming space to input pixel space, which means that different
images may have identical hash code [11]. We conduct extensive
experiments to further verify this assertion, results on HashNet
and CSQ are depicted in Fig. 1. It is clear from this figure that the
samples with the same label will cluster as much as possible, and
many samples in the cluster have exactly the same hash code.

Motivated by the above observation, we aim to find a target
anchor point to represent the target cluster to be attacked. With an
anchor point available, the set-to-set optimization problem of Eq. (3)
naturally reduces to a set-to-point problem. Our key idea is shown
in Fig. 2. By sampling 𝑛 images from 𝑿𝑡 and then adopting the
component-voting scheme in [2], we obtain the target anchor hash

code 𝒉𝑡 = sign

(
𝑛∑
𝑗=1

𝒄 𝑗

)
, where 𝒄 𝑗 is the hash code of each image

from 𝑛 samples, 𝒉𝑡 is the hash code of target anchor point. Then the
set-to-set formulation is converted to a set-to-point optimization
as follows:

min
𝛿
𝑑

(
𝐹

(
𝑿 ′) ,𝒉𝑡 ) (4)

Overall Objective Function. In the typical point-to-point ad-
versarial attack scenario, the adversarial example 𝒙 ′𝑞 is obtained
through the following optimization:

min𝑑H (sign(𝐻 (𝒙 ′𝑞),𝒉𝑡 ) (5)

Similarly, in order to minimize the Hamming distances between
𝑄 adversarial images and the target anchor code, we can convert
Eq. (4) into:

min
𝛿

𝑄∑
𝑞=1

𝑑H (sign(𝐻 (𝒙 ′𝑞),𝒉𝑡 ) s. t. 𝛿 ∈ [0, 255] (6)

+

Hamming Space

Class-wise 
patch

Figure 2: Illustration of the set-to-point optimization

Note that after each update of the patch, a clipping is performed
as 𝛿 = min(255,max(0, 𝛿)). In this paper, we abuse the notation
𝛿 ∈ [0, 255] to denote that each entry of 𝛿 is in [0, 255].

As stated in Section 3.1, typical deep hashing model use tanh(·)
during training time. Likewise, we use the hyperbolic tangent func-
tion to approximate the sign function during the patch generation.
Similar to [2, 43], we also use a hyper-parameter 𝛼 to keep a rel-
atively large gradient during training to avoid gradient vanishing.
By substituting Hamming distance with inner product, Eq. (6) is
then transformed to

min
𝛿

−
𝑄∑
𝑞=1

1
𝐾
𝒉⊤𝑡 tanh

(
𝛼𝐻 (𝒙 ′𝑞)

)
(7)

However, since the continuous values 𝐻 (𝒙 ′𝑞) will be projected
into binary codes via sign(·) eventually, if𝐻 (𝒙 ′𝑞 ) has already reached
to the same sign as 𝒉𝑡 and gets close to the bound (i.e., -1 or 1) on
some dimensions, continuing to optimize these dimensions is use-
less at the early stage of optimization. More importantly, the closer
to the bound, the smaller the absolute gradients will be regardless
of the value of 𝛼 [6]. Therefore, we introduce a balancing vector
𝒘𝑞 to make the optimizer focus on the dimensions whose signs are
still different from 𝒉𝑡 or have a larger margin to the bound. In this
concern, the final loss function of our scheme becomes

L(𝛿) = −1
𝑒

𝑄∑
𝑞=1

𝒉⊤𝑡
(
𝒘𝑞 ⊙ tanh

(
𝛼𝐻

(
𝒙 ′𝑞

)))
(8)

where 𝑒 is the total number of non-zero elements of {𝒘𝑞}𝑄𝑞=1, and
𝒘𝑞 is computed as follows:

𝒘𝑘𝑞 =

{
1, if

���tanh(𝐻𝑘 (𝒙 ′𝑞)) + 𝒉𝑘𝑡

��� < 1 + _
0, otherwise

(9)

where 𝑘 indicates the 𝑘-th dimension corresponding to the 𝑘-th
output of hash layer 𝐻 (𝒙 ′𝑞) and the 𝑘-th value of target anchor
code 𝒉𝑡 , _ is a threshold that denotes the margin between 𝒉𝑘𝑡 and
tanh(𝐻𝑘 (𝒙 ′𝑞)).

3.3 Product-based Weighted Gradient
Aggregation

Based on the optimization goal stated in Eq. (8), we further propose
a weighted gradient aggregation strategy by exploiting gradient
information in the Hamming space, in order to generate a more
stable and universal adversarial patch in an efficient way.
Key Observations. We first explore the characteristics of Ham-
ming space by evaluating inner products and gradients to discover
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(a) inner-product (b) 𝑙1-norm

Figure 3: The inner product V.S. 𝑙1-norm of gradients

the potential common patterns that exist in the generation of each
adversarial example with the same label. We sample different im-
ages with the source label 𝒚𝑠 and choose an anchor point within
the target cluster. We generate an adversarial patch for each sample
exclusively, and then compute 𝑙1-norm of gradients in each iteration
to analyze the relation between gradients and inner products.

1) As shown in Fig. 3(a), according to the convergence variance,
we divide the general optimization process into three stages, namely
Stage 1: leaving the original cluster (before point A), Stage 2: moving
to the target cluster (between points A and B), and Stage 3: approach-
ing the anchor point (after point B). We find that in Stage 1 the
sample moves slowly, and once it reaches to somewhere (i.e., point
A) that is far enough from the original cluster, it will run fast to-
wards to the target cluster since Eq. (5) can help the sample find the
right direction. Finally, after entering the target cluster (i.e., point
B), the sample will gradually approach the target anchor code.

2) As shown in Fig. 3(b), the 𝑙1-norm of gradients varies greatly
at each stage. Specifically, the gradient norms of moving to target
cluster stage remarkably outstrip other two stages. We find that
within a certain range, the closer the sample is to the target anchor
in Hamming space, the faster the inner product rises. In other words,
the deep hashing model seems to have a tendency to drag sample
to a closer cluster in Hamming space. We find this phenomenon is
generally common.

Based on the above two observations, we believe that it takes dif-
ferent efforts for different samples to leave the original cluster. The
earlier the sample leaves Stage 1, the faster it will converge to the
target cluster. Therefore, we propose the product-based weighted
gradient aggregation strategy, by assigning different weights to
each intermediate gradients, to push the samples to move towards
Stage 2 as fast as possible.
Gradient Aggregation. By taking the final loss function of Eq. (8)
into consideration, we now present the details of how gradient
aggregation is used to accelerate the optimization process of Eq. (8),
as depicted in Fig. 4.

In our design, when generating the adversarial patch 𝛿 , we sam-
ple𝑚 images from 𝑿𝑠 and construct the training data set with 𝐵
mini-batches 𝑿𝑡𝑟𝑎𝑖𝑛 = 𝑿1 ∪ 𝑿2 ... ∪ 𝑿𝐵 , each of which contains
𝑈 =𝑚/𝐵 images. The rest images of 𝑿𝑠 are regarded as the testing
data set to evaluate the generalization ability of 𝛿 . Let 𝒙𝑢 denote
the 𝑢-th sample of 𝑿𝑏 . For each mini-batch of samples, they all
will pass through the pipeline of framework simultaneously for 𝐼
iterations. We use 𝑖 to indicate the 𝑖-th iteration.

Initially, for each mini-batch 𝑿𝑏 , we obtain an adversarial set
𝑿 ′
𝑏
= {𝒙 ′𝑢 }𝑈𝑢=1 using Eq. (2). It is easy to obtain the hash code 𝒄𝑢

Figure 4: The pipeline of using aggregated gradient to solve
Eq. (8)

of 𝒙 ′
𝑏
, as well as the corresponding hash layer outputs 𝐻 (𝑿 ′

𝑏
). We

compute the inner product between each hash code 𝒄𝑢 and the
anchor code 𝒉𝑡 as follows:

𝑃𝑢 = 𝒄𝑢 · 𝒉𝑡 (10)

Then, we use 𝐻 (𝑿 ′
𝑏
) to compute the loss with Eq. (8), and use

back propagation to compute the gradient of 𝒙 ′𝑢 as:

∇L𝑢 =
𝜕L
𝜕𝒙 ′𝑢

(11)

Additionally, in order to let the optimization of patch influenced
more by the samples at moving to target cluster stage, we aggregate
the gradients discriminatively according to their associated inner
products with the anchor code. In other words, a gradient ∇L𝑢
associated with a larger product 𝑃𝑢 will be weighted more for
updating the adversarial patch. Concretely, at 𝑖-th iteration, we
update an aggregated gradient according to

∇̄ =

∑𝑈
𝑢=1𝑊𝑢 × ∇L𝑢∑𝑈

𝑢=1𝑊𝑢

𝑊𝑢 = { 𝑃𝑢 + 𝛽, if 𝑃𝑢 ≤ 𝑇
𝑃𝑢 − 𝛾, otherwise

(12)

where 𝛽 is a hyper-parameter to bias the weights and also keep
all the weights positive. Furthermore, we introduce a threshold 𝑇
to find the samples that have already entered the target cluster.
Accordingly, we lower the weights of those samples by another
hyper-parameter 𝛾 . This way, the direction of aggregated gradient
will be affected more by the samples within moving to target cluster
phase.
Recurrent PatchUpdate.Oncewe obtain the aggregated gradient
∇̄, we update the patch vector with momentum [12] as follows:

𝑔𝑖
𝑏
= ` · 𝑔𝑖−1

𝑏
+ ∇̄
∥∇̄∥1

𝛿𝑖
𝑏
= 𝛿𝑖−1

𝑏
+ 𝜎 · sign

(
𝑔𝑖
𝑏

) (13)

where 𝑔𝑖
𝑏
is the momentum of the 𝑖-th iteration of 𝑏-th mini-batch

and 𝜎 is the learning rate. Note that, the update operation above is
recurrently executed during the entire 𝐼 iterations for a mini-batch
of samples.

Last but not least, it is observed that the hard thresholding mask-
ing operator 𝑀 in Eq. (2) will bring negative consequence to the
attack. On the one hand, because of the hard thresholding, the patch
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Algorithm 1: Set-to-set Targeted Adversarial Patch Attack
Input: training set 𝑿𝑡𝑟𝑎𝑖𝑛 = 𝑿1 ∪ 𝑿2 ... ∪ 𝑿𝐵 ; target

model 𝐹 (·); target anchor code 𝒉𝑡 ; location mask𝑀 ;
iteration number 𝐼 ; patch aggregation number 𝑝 .

Output: set-to-set adversarial patch 𝛿 = 𝛿𝐵 .
1 Initiate a patch 𝛿0 with a random noise;
2 Initiate a empty patch list 𝚫;
3 save 𝛿0 in 𝚫;
4 for b=1, ... ,B do
5 if patch number of 𝚫 ≥ 𝑝 then
6 Obtain the initial patch 𝛿0

𝑏
with Eq. (14);

7 else
8 Set the last patch 𝛿𝑏−1 in 𝚫 as the initial patch 𝛿0

𝑏
;

9 for i=1, ... ,I do
10 Generate examples 𝑿 ′

𝑏
= (1 −𝑀) ⊙ 𝑿𝑏 +𝑀 ⊙ 𝛿𝑖−1

𝑏
;

11 Compute the hash codes 𝐹 (𝑿 ′
𝑏
);

12 Compute the inner product 𝑃𝑢 with Eq. (10);
13 Compute the loss with Eq. (8);
14 Obtain a list of gradients with Eq. (11);
15 Aggregate gradients with Eq. (12) ;
16 Update the patch 𝛿𝑖

𝑏
with Eq. (13) ;

17 Clip 𝛿𝑖
𝑏
to [0, 255];

18 Save 𝛿𝑏 to Δ;

generated from a single mini-batch 𝑿 ′
𝑏
, which can achieve high in-

ner product for all the samples in the current mini-batch, will have
relatively low applicability for unseen mini-batches. On the other
hand, if we simply apply the patch generated from the previous
mini-batch as the initial patch for the following one during training,
it may get updated thoroughly by masking and thus hard to achieve
a strong generalization ability. A general remedy to this problem is
to add another threshold condition to enforce generalization [26],
but this will inevitably make the attack inefficient. It is empirically
found that averaging a few patches trained from the previous mini-
patches will stabilize the overall attack very well. Specifically, we
use a patch list Δ to save 𝑝 adversarial patches generated in the
previous mini-batches, and then set the initial patch for the current
mini-batch as:

𝛿0
𝑏
=

1
𝑝
(𝛿𝑏−𝑝 + 𝛿𝑏−𝑝+1 + ... + 𝛿𝑏−1) (14)

where the 𝛿0
𝑏
indicates the initial patch for 𝑏-th mini-batch. In

summary, the detailed algorithm of AdvHash is provided in Alg. 1.

4 EXPERIMENTS
4.1 Experimental Setting
Datasets.Weevaluate AdvHash on ImageNet [33] andNUS-WIDE [9].
For ImageNet, following [2, 6], we build a subset that has 130K im-
ages with 100 classes. For NUS-WIDE, following [47], we use a
subset that has 195,834 images with 21 concepts. For training target
models, we sample 100 and 500 images per class as the training set,
50 and 100 per class as the test set on ImageNet and NUS-WIDE,
respectively.

Evaluation metrics. We use mean average precision (mAP) as an
evaluation metric. Similar to [2], we adopt four variants of mAP as
follows:

• org-mAP (O): take clean images as input and original label
as the referenced label ;

• t-mAP (T): take clean images as input and target label as the
referenced label;

• adv-org-mAP (AO): take perturbed images as input and orig-
inal label as the referenced label;

• adv-t-mAP (AT): take perturbed images as input and target
label as the referenced label.

Note that we calculate these mAPs on top 1,000 retrieved results
for ImageNet and top 5,000 for NUS-WIDE, as did in [2].
Target models.We choose different DNNs (i.e., ResNet50 [16] and
VGG16 [35]) as the backbone for two state-of-the-art deep hashing
methods (i.e., CSQ [44] and HashNet [6]). HashNet is a widely used
structure and serves as the target framework in recent studies about
attacking deep hashing such as [39] [43], and CSQ is designed to
generate highly clustered deep hashing models.

Table 2: Source class to target classmappings for the datasets
ImageNet and NUS-WIDE

Dataset Mapping Source class Target class

ImageNet

M1 Cock Clog
M2 Hermit crab Triumphal arch
M3 Sea lion Suspension bridge
M4 Malinois Screw
M5 Binoculars Water buffalo
M6 Clothes iron Fire truck
M7 Pinwheel Porcupine
M8 Consomme Car mirror
M9 Jackfruit European fire salamander
M10 Earthstar Hautbois

NUS-WIDE

M11 plant cloud
M12 street, building people
M13 cloud, sky water
M14 cloud, sky, grass animals
M15 cloud, sky, water, blue, sea flower

4.2 Attack Performance
Implementation Details. As shown in Table 2, we evaluate Ad-
vHash by randomly selecting 10 and 5 source-to-target mappings
for ImageNet and NUS-WIDE, respectively. For each mapping on
ImageNet, we sample 50 and 500 images from the source set 𝑿𝑠 as
training set and test set respectively. For each mapping on NUS-
WIDE, we sample 100 images and 800 images as training set and
test set respectively. The anchor code 𝒉𝑡 is obtained by sampling
50 and 100 images from target class image set 𝑿𝑡 for ImageNet and
NUS-WIDE respectively.

For each patch generation, we set the epoch number to 5. In
each epoch, the training set is divided into 5 mini-batches. We
set the noise percentage of each sample to be 0.03. When training
each mini-batch, we set the learning rate 𝜎 as 1 and the number of
iterations as 1,000. Note that, the org-mAP and t-mAP are evaluated
on the test set, and adv-org-mAP and adv-t-mAP are evaluated on
adversarial examples.
Analysis. The detailedmAP results for each mapping are shown in
Table 3. Firstly, the sharp mAP drop (from O to AO) and t-mAP rise
(from T to AT) reveal that the perturbed samples have successfully
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Table 3: Targeted attack performance for each mapping on CSQ [44] and HashNet [6]

Dataset Mapping

CSQ
ResNet50 VGG16

32 bits 64 bits 32 bits 64 bits
O T AO AT O T AO AT O T AO AT O T AO AT

ImageNet

M1 98.57 0.00 2.06 93.21 98.75 0.00 10.17 88.99 97.97 0.00 1.99 92.34 98.57 0.00 2.06 93.21
M2 92.85 0.00 0.35 98.34 91.16 0.00 7.85 91.38 89.18 0.01 2.05 95.76 90.98 0.00 0.79 98.76
M3 92.60 0.06 0.98 99.04 95.06 0.27 4.06 95.39 90.51 0.27 0.38 98.57 92.42 0.20 0.19 98.77
M4 92.51 0.00 0.00 99.33 94.74 0.00 4.11 95.97 89.87 0.00 0.16 97.61 91.40 0.00 0.00 98.02
M5 87.46 0.00 0.85 99.04 88.06 0.01 2.55 96.90 78.66 0.01 18.94 60.60 81.70 0.00 0.55 99.13
M6 84.26 0.05 0.96 97.22 86.74 0.05 11.03 90.40 78.72 0.04 0.21 98.81 82.70 0.02 0.56 98.96
M7 94.44 0.20 2.76 95.56 95.98 0.00 9.86 89.79 90.24 0.00 0.53 99.01 91.05 0.00 1.37 97.74
M8 91.24 0.00 0.39 99.36 90.39 0.00 6.72 93.18 89.57 0.16 5.73 50.12 88.00 0.16 23.72 5.57
M9 95.28 0.00 0.22 95.04 97.31 0.00 9.34 87.21 96.11 0.00 0.39 97.40 96.68 0.00 0.98 95.32
M10 94.23 0.00 0.00 99.66 95.10 0.00 0.00 99.43 91.77 0.01 0.00 96.71 93.10 0.00 0.19 98.29
AVG 92.34 0.03 0.86 97.58 93.33 0.03 6.57 92.86 89.26 0.05 3.04 88.69 90.66 0.04 3.04 88.38

NUS-WIDE

M11 42.08 20.58 3.29 88.40 41.48 19.24 3.03 87.67 39.49 18.27 2.71 81.13 40.20 17.63 1.77 89.35
M12 77.18 8.89 11.14 92.19 77.73 8.09 3.79 97.67 76.15 8.62 3.07 98.37 73.76 8.99 2.12 98.32
M13 92.65 12.86 52.58 77.45 93.10 11.52 49.28 77.97 90.54 13.68 21.22 74.19 92.04 12.98 15.61 76.22
M14 96.50 2.61 6.50 98.72 97.13 2.52 7.25 99.18 96.18 2.95 9.91 98.18 96.83 3.09 7.57 98.10
M15 98.85 0.23 37.95 62.17 99.14 0.28 20.53 81.50 98.88 0.28 16.10 76.82 99.19 0.25 15.69 73.76
AVG 81.45 9.03 22.29 83.79 81.72 8.33 16.78 88.80 80.25 8.76 10.60 85.74 80.40 8.59 8.55 87.15

Dataset Mapping HashNet

ImageNet

M1 97.36 0.00 0.27 70.27 48.89 0.00 0.20 64.18 94.64 0.07 0.07 74.87 98.07 0.00 0.12 36.02
M2 90.03 0.00 1.44 76.41 47.69 0.00 0.66 97.82 85.72 0.00 2.08 93.00 86.03 0.00 0.19 99.24
M3 93.43 0.22 1.38 97.77 92.20 0.21 1.54 92.15 82.60 0.26 1.12 98.35 91.58 0.01 0.18 99.40
M4 92.35 0.00 0.00 99.65 86.25 0.00 0.00 99.54 93.01 0.00 0.00 97.87 89.48 0.00 0.00 99.49
M5 80.11 0.03 1.54 84.25 83.19 0.00 0.49 60.53 67.53 0.23 0.19 96.66 80.91 0.04 0.00 99.48
M6 79.19 0.23 8.49 66.97 86.43 0.00 26.84 43.97 38.09 0.03 0.32 94.57 72.57 0.02 0.01 99.33
M7 95.59 0.00 4.73 94.87 96.46 0.00 3.24 80.97 87.15 0.01 0.19 98.07 93.33 0.00 0.19 99.57
M8 74.33 0.00 0.00 87.73 76.31 0.00 0.00 99.05 86.85 0.04 0.66 95.78 87.66 0.00 0.00 99.89
M9 25.76 0.01 0.23 74.16 86.54 0.00 0.98 45.71 73.12 0.00 1.25 32.80 96.12 0.00 0.00 19.11
M10 47.08 0.01 0.00 71.74 65.06 0.00 0.00 40.87 93.14 0.00 0.00 97.26 95.02 0.01 0.00 99.55
AVG 77.52 0.05 1.81 82.38 76.90 0.02 3.40 72.48 80.19 0.06 0.59 87.92 89.08 0.01 0.07 85.11

NUS-WIDE

M11 39.41 15.06 3.53 84.70 38.93 14.59 4.24 83.25 40.06 15.57 1.10 82.95 39.40 15.38 0.86 87.92
M12 68.16 9.37 4.75 96.09 76.46 8.08 2.41 98.04 68.37 10.40 2.34 98.45 69.82 7.55 2.49 99.34
M13 89.40 16.08 37.41 80.95 91.04 15.23 32.19 86.02 90.14 16.12 15.88 82.84 93.39 13.89 11.95 86.15
M14 95.41 4.65 14.21 98.76 97.08 2.72 15.62 98.87 95.65 3.90 7.33 97.89 97.65 3.01 5.61 99.13
M15 98.64 0.16 23.78 69.17 99.23 0.28 40.01 64.34 98.07 0.21 9.94 77.14 99.43 0.17 6.94 87.38
AVG 78.20 9.06 16.74 85.93 80.55 8.18 18.89 86.10 78.46 9.24 7.32 87.85 79.94 8.00 5.57 91.98

left the original clusters and enter the target clusters in Hamming
space. Secondly, we can see that among the 120 attack settings,
93.33% of them have an AT above 60%, 60.90% of them can achieve
impressive attack performance with AT above 90%, 18.3% of them
have an outstanding AT above 99%, regardless of hash code lengths,
deep hashing methods, data sets, and backbones. Fig. 5 gives an
illustrative example of targeted attack result of mapping M3.

Additionally, we notice that the overall attack performance on
CSQ is better than on HashNet, especially for the single-label
dataset ImageNet. We believe this is because CSQ is more clustered
than HashNet, which further verify our analysis on set-to-point
optimization in Sec. 3.2.

4.3 Comparison Study
Implementation Details. In this section, we compare AdvHash
with DHTA [2], which is the most related work with ours. Al-
though [39] proposed a targeted attack on deep hashing as well, it
focuses on improving the transferability of adversarial examples
rather than the attack success rate.

We select 3 mappings for comparison, and reproduce DHTA
using the same training samples as ours to obtain 50 adversarial
examples with 50 entire different adversarial noise for eachmapping
respectively. The iterations for each sample is also set to 1,000. To
ensure a fair comparison, we use the adversarial patch trained with
AdvHash for one epoch to compare with DHTA. Specifically, the
total iterations of ours is the product of mini-batch size, iterations

Table 4: Comparison with DHTA [2]

Mapping Samples
CSQ HashNet

ResNet50 VGG16 ResNet50 VGG16
32 64 32 64 32 64 32 64

M4

DHTA 99.49 99.77 80.94 36.82 99.68 99.25 6.36 36.82
AdvHash-train 98.33 89.3 97.8 34.97 99.63 95.85 95.86 99.5
AdvHash-test 97.14 94.28 97.21 29.72 99.04 95.61 97.42 99.5

M6

DHTA 97.73 99.29 78.71 76.36 92.87 84.09 96.16 97.55
AdvHash-train 97.79 81.3 99.03 99.54 43.38 31.06 94.62 99.6
AdvHash-test 95.87 83.27 98.64 99.15 33.15 36.56 92.64 98.73

M10

DHTA 99.66 99.44 82.5 54.68 69.06 28.94 97.2 99.58
AdvHash-train 97.66 97.41 80.59 98.46 71.32 69.99 97.06 99.59
AdvHash-test 98.67 99.38 79.94 97.33 70.6 70.8 96.85 99.57

for each mini-batch, mini-batch number and epoch number, i.e.,
10 × 1000 × 5 × 1 = 50000. The total iterations for DHTA is the
product of iterations for each sample and the sample number, i.e.,
1000 × 50 = 50000. We evaluate AdvHash on the training data set
(denoted as AdvHash-train) and the testing data set (denoted as
AdvHash-test).
Analysis. The adv-t-mAP results over 50 training samples and
500 test samples are shown in Table 4. Firstly, the adv-t-mAP of
AdvHash-train and AdvHash-test do not vary much in each case,
especially when they have already achieved a high performance,
which means that the generated patches generalize well to the
unseen test samples. This confirms the effectiveness of weighted
gradient aggregation and recurrent patch update strategies. Sec-
ondly, AdvHash can compete or even outperform DHTA in some
cases. Note that DHTA is an image-specific attack, thus is easier
to achieve good attack performance. Nevertheless, AdvHash can
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Figure 5: An illustration of targeted attack result. Retrieved objects with top-10 similarity are shown. The green box indicates
source objects, red box indicates target objects, and yellow box indicates irrelevant objects.
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Figure 6: Attack performance with different noise percent-
age on mappings M4 and M12

achieve both high attack performance and strong generalization
ability simultaneously.

4.4 Ablation Study
Implementation Details. We conduct two ablation studies. First,
we investigate the effect of patch percentage on the attack perfor-
mance of the mappings M4 and M12, where the patch percentage
is set to 0.02, 0.03, and 0.05, respectively, while all the other experi-
ments remain unchanged as stated in Sec. 4.2. We then investigate
the efficiency of our proposed gradient aggregation strategy. We
compare our product-based weighted aggregation strategy with
mean aggregation (i.e., assigning the same weight for each sample)
on 4mappingsM1,M3,M5, andM7 under 5 different training/test
ratios 2%, 6%, 10%, 20%, and 40% respectively. Concretely, we sample
500 images as the test set, and 5 different training sets (i.e., 10, 30,
50, 100 and 200 images) for each mapping. In this experiment, we
choose 64-bits CSQ-ResNet50 as the target model.
Analysis. Fig. 6 shows the AT results of the first ablation exper-
iment, where the lines represent the average AT from all target
models in each setting, and the colored shaded area stands for the
range of minimum and maximum values of AT with different target
models. Therefore, the smaller the colored shaded area, the more
uniform the attack success rate is. From Fig. 6 we find a larger
noise percentage can lead to a higher attack success rate with less
variance towards different target models. In addition, the patch per-
centage of 0.05 can achieve nearly 100% AT on each target model.

Fig. 7 shows the AT results of our second ablation experiment.
The red curves represent the AT results of product-based weighted
gradient aggregation under different training/test ratios, while the
blue curves represent that of mean gradient aggregation. We can
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Figure 7: Attack performancewith different training set pro-
portions and different gradient aggregation methods.

see that the weighted gradient aggregation method can get a bet-
ter grade in most cases when the training/test ratios are set in a
reasonable interval. Specifically, when the number of training set
images is small, the attack with weighted gradient aggregation can
achieve a higher generalization ability than the mean aggregation
approach.

5 CONCLUSION
In this paper, we propose the first targeted mismatch attack scheme
on deep hashing with adversarial patch. We first formulate a set-to-
set problem and then transform it into a set-to-point optimization.
We then propose a product-based weighted gradient aggregation
strategy in order to generate a stable adversarial patch more effi-
ciently. Our extensive experiments verify that AdvHash is highly
effective at attacking state-of-the-art deep hashing schemes.
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